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This paper is concerned with the coupling mechanisms leading to the spontaneous
generation of sound during flame propagation in a tube open at one end. We consider
the cases of premixed gaseous combustion and of premixed spray combustion of
decane droplets in air. The flame front propagates from the open to the closed end of
a tube and, for a particular position, starts to amplify a longitudinal acoustic mode
of the tube. We call this mode the primary acoustic instability and focus our study on
the physical mechanisms responsible for sound amplification. Measured amplification
rates are compared to calculated values. In the gaseous case, it is shown that the
instability results from a coupling between the acoustic acceleration field and the
geometry of the flame front separating the burnt gases from the denser unburnt
mixture. The situation is quite different in the spray case. The primary acoustic
instability is much stronger and results from a modification of the inner structure of
the flame. This modification arises from the velocity lag of the droplets in the acoustic
velocity field, leading to a modulation of the fuel flux at the flame.

1. Introduction
The first experimental evidence of the thermo-acoustic instability of a flame prop-

agating in a tube is found in the work of Mallard & Le Chatelier (1883). A recent
experimental study of Searby (1992), which follows the previous work of Kaskan
(1953), Markstein (1953) and Leyer & Manson (1971), describes the different phases
of the development of the instability when a premixed flame propagates from the
open to the closed end of a tube. It is now clear that the final phase is a violent
parametric instability, first identified by Markstein (1964). This secondary parametric
instability can be triggered only by pre-existing finite-amplitude acoustic oscillations
(Searby & Rochwerger 1991). The primary acoustic instability is thus seen to be the
key feature of the whole process.

Different mechanisms have been proposed by Dunlap (1950), Kaskan (1953),
Rauschenbakh (1961) and Markstein (1970) to explain the primary acoustic instability.
The theoretical work of Clavin, Pelcé & He (1990), considering Dunlap’s mechanism,
and Pelcé & Rochwerger (1992), considering Rauschenbakh’s mechanism, give analyt-
ical expressions for the linear growth rate associated with these two mechanisms. More
recently Clavin & Sun (1991) have proposed a new mechanism specific to premixed
spray flames. However, up to now, the lack of precise experimental data has made it
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impossible to identify the primary instability mechanism unambiguously. The main
purpose of this paper is to provide such experimental data. We will use the compari-
son between the premixed gaseous case (propane–air mixture) and the premixed spray
case (decane droplets in air) to help identify the physical mechanisms responsible for
the primary sound emission in each case.

Acoustic instabilities in combustion result from a constructive coupling between
local heat release fluctuations and pressure oscillations associated with the acoustic
modes of the combustion chamber. A fluctuation of the reaction rate of quasi-isobaric
combustion acts as an unsteady local source of volume which generates sound (Strahle
1985; Clavin & Siggia 1991). The loop is closed by a feedback mechanism in which
the heat release rate is modulated by the action of the acoustic wave. According
to Rayleigh’s criterion (Rayleigh 1878), the instability develops if the local heat
release rate fluctuation is in phase with the pressure oscillation of the acoustic wave.
Several feedback mechanisms have been proposed. They can be classed into different
categories according to whether they modify the local internal structure or the global
geometry of the flame front and to whether they are related to the action of the
acoustic pressure and temperature oscillations (pressure coupling), or to the action of
the acoustic velocity (velocity coupling).

Dunlap (1950) first proposed a mechanism for flames in premixed gases. It involves
the modulation of the reaction rate of the flame produced by the temperature
fluctuations associated with an adiabatic acoustic wave. According to the terminology
defined above, it is a pressure coupling mechanism involving the internal structure of
the front. The theoretical analysis of Clavin et al. (1990) shows that the corresponding
amplification can be just sufficient to overcome viscous and radiative damping and
could lead to an instability, but only in some marginal cases.

Rauschenbakh (1961) and Markstein (1970) have proposed a different type of
feed-back mechanism which can potentially lead to a much stronger instability: the
difference of density between the hot burnt gases and the cold unburnt gases makes
the shape of a curved flame front sensitive to the presence of an acceleration such
as that associated with an acoustic velocity field. This mechanism is thus a velocity
coupling involving the geometry of the front. The modulation of total energy release
rate arises from the modulation of the total flame surface area produced by the action
of the acoustic acceleration on the amplitude of cellular structures. The theoretical
analysis of this mechanism is less advanced than the preceding one; however the
analytical results of Pelcé & Rochwerger (1992), obtained in the limit of a weakly
curved interface, give a correct estimation of the growth rate of this instability.

The experimental results presented in this paper for premixed gaseous flames show
that the measured growth rate of the primary instability is between one and two
orders of magnitude higher than that predicted for the pressure coupling mechanism
described by Clavin et al. (1990), but is compatible with the growth rate calculated
for the velocity coupling mechanism treated by Pelcé & Rochwerger (1992).

Additional results of this paper concern the primary acoustic instability of a
flame propagating in a spray of decane droplets in air. The regime that is studied
here will be called premixed spray combustion. In this regime the spray droplets
are small, numerous and uniformly distributed in the unburnt gas, so that fuel
mass fraction is constant when averaged over a fluid element whose size is of the
same order as the flame thickness. Moreover in this regime the droplets vapor-
ize on a time scale short compared to the transit time through the flame and the
structure of the chemical reaction zone is similar to that of a premixed gaseous
flame, see § 5. Our experimental measurements show that the linear growth rate
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in the spray case is an order of magnitude higher than for the corresponding
gaseous case. This result can be explained by the coupling mechanism proposed
by Clavin & Sun (1991) for spray flames. This mechanism involves a modification
of the internal structure of the flame in the presence of an acoustic wave. However, in
the spray case, the change in internal structure is produced by the velocity field and
not by adiabatic temperature variations, as in Dunlap’s mechanism. The inertia and
Stokes’ drag of the droplets produce a phase shift between the velocities of the gas and
the liquid droplets. This velocity difference in turn produces oscillations in the flux
of fuel into the reaction zone and leads directly to a modulation of the heat release
by the acoustic wave. The theoretical analysis predicts that, for droplet diameters
between roughly 1 µm and 10 µm, the strength of the instability is proportional to
the ratio of the viscous relaxation time of the drops, τvis, to the transit time through
the flame thickness, τt. This mechanism leads to linear growth rates potentially much
higher than those expected for gaseous mixtures. However, we will show here that, for
Rayleigh’s phase criterion to be satisfied, the frequency of the selected acoustic mode,
ω, must be higher than a critical value which is a fraction of the inverse of the transit
time through the flame, 1/τt. The existence of a cut-off frequency, characteristic of
sprays, is the signature of an internal relaxation phenomenon in the flame front.
Our experiments show that it leads to a behaviour which is qualitatively different
to that observed for gaseous combustion. One of the objectives of this paper is to
observe these differences experimentally and to investigate the physical mechanisms
responsible for the cut-off frequency.

The paper is organized as follows. Basic considerations concerning thermo-acoustic
instabilities of flames are summarized in § 2. Section 3 describes the experimental set-
up. Our experimental results are presented in § 4. A theoretical analysis of phenomena
specific to sprays, in particular concerning the cut-off frequency, is presented in § 5.
Our conclusions are presented in § 6. Details concerning the calculation of acoustic
losses are presented in Appendix A, technical details concerning an extension of
the calculation of Pelcé & Rochwerger are given in Appendix B. Calculations con-
cerning the evaluation of the cut-off frequency with temperature-dependent diffusion
coefficients are presented in Appendix C.

2. Background
2.1. Phenomenology and orders of magnitude

For quasi-homogeneous combustion in a cavity, the origin of thermo-acoustic instabil-
ities is easily derived from the equation for acoustic wave propagation. To simplify the
presentation, we consider the ideal case of a quasi-uniform non-dissipative medium,
with flow velocities small compared to the speed of sound. These assumptions lead
to the linear wave equation (see Clavin 1994 for a recent revue)

∂2p

∂t2
− c2∇2p = (γ − 1)

∂q̇

∂t
, (2.1)

where p is the pressure, c is the speed of sound, γ = Cp/Cv the specific heat ratio
and q̇(r, t) the field of heat release rate per unit volume. If we write the feedback
mechanism in a form in which the fluctuation δq̇ is expressed as a linear function
of δp, then (2.1), in a spatial Fourier representation, is seen to describe an acoustic
oscillator which is amplified or damped, according to whether Rayleigh’s criterion is
satisfied or not. When the heat release rate fluctuations, δq̇, and pressure fluctuations,
δp, are in phase, the order of magnitude of the linear growth rate is proportional to
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their ratio
1

τins
∝ |δq̇||δp| . (2.2)

The case of a flame propagating in a tube differs from the preceding example in
that it is an inhomogeneous problem. Typically, the flame front occupation ratio is
smaller than, or of the order of, 6/L, where 6 is the tube diameter and L the
combustion chamber length. For high aspect ratios (L/6 � 1), the reaction zone
can be treated as a discontinuity on the scale of the longitudinal acoustic mode. The
mass conservation relation for quasi-isobaric combustion can be written

ρc2 (∇ · u) = q̇, (2.3)

where ρ is the local gas density and u is the gas velocity. After spatial integration over
the combustion zone, (2.3) leads to an expression for the jump in the fluctuations of
gas velocity across the discontinuity:

(δub − δuo) π6
2

4
=

∫ ∫ ∫
1

ρc2
δq̇ d3r. (2.4)

The subscripts b and o refer to the burnt and unburnt gas side respectively. Equation
(2.4) expresses the gas expansion rate. The rate of change of the acoustic energy in
the tube, ε, due to the combustion is given by the expression

dε

dt
= (δub − δuo) π6

2

4
δp . (2.5)

Evaluating ε in the form

ε ≈ (ρ δu2
) π62

4
L ≈

(
δu δp

c

)
π62

4
L ≈

(
δu δp

ω

)
π62

4
, (2.6)

where ω is the angular frequency of the acoustic mode, (2.5) and (2.6) enable us to
evaluate the linear growth rate, 1/τinst, defined as

1

τinst
≡ 1

ε

dε

dt
≈
( |δub − δuo|

|δu|
)
ω, (2.7)

leading to the reduced growth rate

1

ωτins
≈
( |δub − δuo|

|δu|
)
. (2.8)

Using (2.4) to evaluate the order of magnitude of the velocity jump fluctuation, we
find, when the Rayleigh condition is satisfied

1

τinst
≈
(
∆

L

)( |δq̇|
|δp|

)
, (2.9)

where ∆ represents the thickness of the flame ‘brush’, ∆ . 6. The coherence of this
expression with the result obtained for the homogeneous case (2.2) is seen by noting
that the heat release concerns only a fraction ∆/L of the total tube length.

2.2. Transfer functions

The transfer function characterizes the feedback mechanism of the acoustic wave on
the flame front. For a pressure coupling, we define the transfer function, Z , in a
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temporal Fourier representation, by

(δub − δuo) ≡ Z δp

ρoco
, (2.10)

where δu is positive towards the burnt gas, i.e. in the direction opposite to flame
propagation. In the case of a planar flame, Clavin et al. (1990) give an analytical
expression for Z (ωτt) as a function of the acoustic frequency, ω, reduced by the
transit time through the laminar flame front, τt ≡ Dth/UL

2, where Dth is the thermal
diffusivity in the cold gas and UL is the laminar flame speed. This calculation was
done for a simplified model in which the chemical reaction was reduced to a one-step
reaction controlled by an Arrhenius law. The transfer function thus obtained is given
by

Z =
β

2
M
Tb

To
(γ − 1)N (ωτt) , (2.11)

where β is the reduced activation energy,

β =
E

RTb

Tb − To
Tb

, (2.12)

E is the activation energy, R is the gas constant, Tb and To are the temperature of
the burnt and unburnt gases, M is the Mach number of the laminar flame speed,
M ≡ UL/co, and N (ωτt) is a function of order unity depending on the inner structure
of the flame, see figure 1. Equations (2.8) and (2.10) show that the transfer function
is also the order of magnitude of the linear growth rate:

1

ωτinst
≈ β

2
M
Tb

To
(γ − 1) . (2.13)

The exact relation between the transfer function, Z , and the linear growth rate will
be given later in (2.18). The presence of the activation energy, β, shows that the
instability results from a feedback through the temperature fluctuation in the acoustic
wave. The frequency dependence of Re(Z) is shown in figure 1 for different values
of the Lewis number Le ≡ Dth/Dm, where Dth and Dm represent the thermal and
mass diffusivities respectively. It can be seen in figure 1 that both the low and high
frequency limits are independent of the details of the flame front structure. However
this is not the case for the intermediate frequencies. The resonant behaviour seen for
ωτt ≈ 1 and Le > 1 is related to the existence of an intrinsic instability of the front
at high Lewis numbers, described by a Hopf bifurcation (Sivashinsky 1977; Joulin
& Clavin 1979). This instability is not observed in real premixed flames because the
actual Lewis numbers are not sufficiently high.

In the case of a velocity coupling, we introduce a new transfer function, Tr, which
is defined, in a temporal Fourier representation, by

(δub − δuo) ≡ Tr δuo. (2.14)

Pelcé & Rochwerger (1992) have calculated this transfer function for the mechanism
of modulation of the amplitude of cellular structures proposed by Rauschenbakh
(1961). They consider a weakly cellular flame in the limit ak � 1, where a is the
amplitude of the cells and k = 2π/λ is the wavenumber. Their results show that the
transfer function scales as (ak)2 times a function P (ωτt, kd) of the reduced frequency,
ωτt and of the reduced wavenumber, kd, where d ≡ Dth/UL is the laminar flame
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Figure 1. Normalized transfer function for the pressure coupling as a function of reduced
frequency. Reduced activation energy β = 20, from Clavin et al. (1990).

thickness, see also Appendix B:

Tr =
(ak)2

2

(
Tb − To
To

)
P (ωτt, kd) . (2.15)

The dependence of Im(Tr) on the reduced wavenumber, kd, is shown in figure 2(a)
for three different reduced frequencies, corresponding to the fundamental and first
two harmonics of a 1.2 m tube. The transfer function is positive and decreases
in magnitude with increasing frequency, except at very large wavenumbers. In our
experiments, values of kd are very small, kd < 0.01.

The velocity coupling proposed by Clavin & Sun (1991) for sprays or particle-
laden gases, mentioned in the introduction, is of a different kind since it involves a
modification of the internal structure of the flame and not a simple change of the
geometry of the front. A discussion of some aspects of the transfer function for this
mechanism will be presented in § 5. Here, we recall that the corresponding transfer
function can be written

Tr =
β

2

(
Tb − To
To

)
τvis

τt
R (ωτt) ,

where τvis is the viscous relaxation time of the droplet, given by Stoke’s law (A 6)
when the local Reynolds number is sufficiently small. R(ωτt) is a function of order
unity depending on the details of the inner structure of the flame. According to (2.8)
and (2.14), the reduced linear growth rate is of the order of Im (Tr):

1

ωτinst
≈ Im (Tr) ≈ β

2

(
Tb − To
To

)
τvis

τt
. (2.16)

A comparison of (2.3) and (2.16) shows that the coupling between acoustic waves and
the inner structure of a flame is expected to yield a much stronger thermo-acoustic
instability for sprays than for gases whenever

τvis

τt
� (γ − 1)M.

This condition is fulfilled for droplets diameters greater than ≈ 1 µm.
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Figure 2. (a) Transfer function for the velocity coupling described by Pelcé & Rochwerger
(1992). Markstein number = 4.5, other parameters are appropriated for a lean propane flame
of burning speed 0.2 m s−1. (b) Transfer function for the velocity coupling described by Clavin &
Sun (1991). Parameters used are β = 15, `∗ = 0.026 (dimensionless latent heat), ξ∗ = −4.2
(dimensionless position of droplet vaporization zone), appropriate for the decane spray used in our
experiments.

The typical frequency dependence of the reduced transfer function is shown in
figure 2(b) for various values of β(Le − 1), where Le is the Lewis number. It can be
seen that the transfer function changes sign at a frequency ωτt ≈ 0.4.

2.3. Gain calculation

In the limit of high aspect ratio, the thickness of the combustion region is negligible
compared to the acoustic wavelength. The longitudinal acoustic modes of the cavity
can then be calculated using the transfer functions for the velocity jump at the
interface and supposing continuity of the pressure (the pressure jump introduced
by the combustion is of the order of M2 and can be neglected here). The real
and imaginary parts of the acoustic mode give the resonant frequency and the
amplification (or damping) rate respectively. The calculation of the acoustic mode
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Figure 3. Dimensionless resonant frequencies of an open-closed cavity as a function of the relative
position of the flame front in the tube for Tb/To = 5.

can be performed using a perturbation method when the module of the transfer
function is small compared to 1. This is the case for the three mechanisms presented
above when, respectively, the following inequalities are satisfied:

β

2

(
Tb

To

)
M � 1, (ak)2 � 1,

β

2

(
Tb − To
To

)
τvis

τt
� 1.

To leading order, δub = δuo and the characteristic frequencies, ω, of a tube open at
one end, see Clavin et al. (1990), are given by the solutions of

tan

(
r
ωL

co

)
tan

(
(1− r) co

cb

ωL

co

)
=
ρoco

ρbcb
, (2.17)

where r is the relative position of the flame front in the tube (r ∈ [0, 1]) measured
from the closed end (r = 0), ωL/co is the reduced frequency, L is the length of the
tube and ρ the gas density. The dependence of the reduced frequency on the relative
position of the front is shown in figure 3 for the first three acoustic modes.

The gain is calculated to first order in the perturbation introduced by the transfer
function, see Clavin et al. (1990) and Pelcé & Rochwerger (1992). The linear growth
rate of the instability, 1/τinst, for a pressure coupling is given by

L

coτinst
= Re (Z) F

(
r,
ωL

co

)
, (2.18)

and for a velocity coupling by

L

coτinst
= Im (Tr) G

(
r,
ωL

co

)
, (2.19)

the instability occurring when the right-hand side of (2.18) or (2.19) is positive. The
structure functions, F and G, are related only to the structure of the acoustic mode
in the tube and are given by the following:
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Figure 4. Acoustic structure functions for (a) pressure and (b) velocity coupling mechanisms,
neglecting acoustic losses, Tb/To = 5.

F

(
r,
ωL

co

)
≡

1

r

[
1 + tan2

(
r
ωL

co

)]
+
ρb

ρo
(1− r) tan2

(
r
ωL

co

)[
1 + tan2

(
(1− r)co

cb

ωL

co

)] , (2.20)

and

G

(
r,
ωL

co

)
≡ tan

(
r
ωL

co

)
F

(
r,
ωL

co

)
, (2.21)

in which (ωL)/co is given by the solutions of (2.17).
These characteristic structure functions are shown in figure 4 as a function of the

position of the flame for the first three longitudinal acoustic modes. The structure
function, F , for pressure coupling is always positive. Since the transfer function
Re (Z) is also positive, see figure 2, the pressure mechanism is intrinsically unstable
(but weak) at all frequencies and for all positions of the flame in the tube. The
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Figure 5. Calculated growth rates of instability, including acoustic losses for gaseous (a) and spray
flames (b) (drop diameter 3.8 µm). Flame speed 20 cm s−1.

structure function for velocity coupling, G, is positive for the fundamental frequency,
but for higher harmonics it changes sign with position of the flame in the tube. The
stability of the complete system then depends simultaneously on the sign of G and
the sign of the transfer function. We may thus expect a richer behaviour for velocity
coupling, particularly in the case of a spray where the transfer function, Tr, also
changes sign with frequency, see figure 2(b).

2.4. Actual growth rate

The experimentally observed growth rate results from the competition between the
specific gain of the coupling mechanism, described by (2.18) and (2.19), and the
acoustic losses of the combustion chamber. The acoustic damping has essentially
three different origins, all of comparable strength in our experiments: radiative
losses from the open end of the tube; wall losses associated with the thermal
and viscous boundary layers; and, finally, dissipative losses due to the presence
of droplets in the spray case. The corresponding damping rates are treated in
detail, including the presence of a flame, in Appendix A. The experimental in-



Primary acoustic instability of flames 167

stability appears when the gain produced by the flame is just greater than the
acoustic losses of the tube. In the linear part of the growth, the specific gain
and losses have similar order of magnitude. It is thus essential to have a good
estimate of the total acoustic losses in the presence of flame. To illustrate the pre-
ceding paragraphs, we have calculated the global growth rate of the instability,
including detailed acoustic losses, as a function of the position of the flame in the
tube, for the fundamental mode and for the first two harmonics for the case of velocity
coupling of a gaseous propane flame, corresponding to the transfer functions of figure
2(a), and for a spray of decane droplets corresponding to the transfer function of
figure 2(b) with β(Le − 1) = 6. The acoustic losses are calculated following Appendix
A for a tube 1.2 m long and 0.1 m diameter. The calculated growth rates are shown
in figure 5. They are normalized by the characteristic acoustic time, τa ≡ L/co. Note
that the frequency is a function of the position of the flame, see figure 3.

For the case of a gaseous flame, only the fundamental mode is predicted to be
unstable. At higher frequencies the acoustic losses dominate the instability, see figure
5(a). In the case of a spray flame, the growth rates are higher. The oscillations of
the structure function, G, coupled with the change in sign of the transfer function
leads to a rich behaviour. In the example shown in figure 5(b), the fundamental
frequency is predicted to be unstable only in the lower half of the tube where the
fundamental acoustic frequency is higher than the cut-off frequency in this 1.2 m
tube. The most unstable frequency is initially the first harmonic and there is a small
range of positions near the centre of the tube in which all harmonics are found to be
stable. This predicted behaviour may be compared qualitatively with the observation
presented in figure 9(b) for a flame of decane droplets. We will come back to these
points in §§ 4 and 5.

3. Experimental set-up
The experimental apparatus is quite simple and is shown schematically in figure 6.

The combustion chamber is a cylindrical Pyrex tube of length L = 1.2 m and diameter
6 = 0.1 m. The acoustic conditions are closed at the bottom and open at the top
so that the frequencies of the longitudinal modes of a homogeneous case are given
by fn = (2n+ 1) c/4L, where c is the speed of sound and n the harmonic number.
Without flame, the frequency of the fundamental mode, f0, is ≈ 71 Hz. When a flame
front is present in the tube, the resonant frequencies are increased and depend on the
relative position of the flame front in the tube, see figure 3. The frequencies of the
radial and tangential modes, which scale as c/6, are very much higher and have not
been observed.

Mixture ratios are controlled by sonic nozzles and the droplets were generated using
a ‘Sonicore’ airblast atomizer. The mean diameter of the droplets and the diameter
spread were obtained from an analysis of the intensity distribution in the Fraunhofer
diffraction pattern of the spray. The diffraction pattern was calculated, assuming a
log-normal distribution function for the droplet diameters, and fitted to the observed
pattern. The best fit gave a Sauter mean diameter, D32 = 〈D3〉/〈D2〉 = 3.8 ± 0.5 µm
with a spread parameter of 1.47 µm. The variation of these values with the flows
rates was small and within the quoted error over the range used in these experiments.
According to the analysis of Bayvel & Jones (1981), for decane droplets whose
refractive index is 1.41, the width of the diffraction pattern is given by Fraunhofer’s
expression to better than 20% for droplets of diameter greater than 1.5 µm, except for
a narrow range of diameters between 2.50 and 2.68 µm. The droplet size distribution
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Figure 6. Schematic diagram of experimental apparatus.

from this generator has been checked independently using a Phase Doppler Particle
Analyser. The values of D32 from these two types of measurement differed by less
than 7%. Neither method is capable of accurate measurement of droplet diameters
less than 1 µm.

We used small droplets in order that the experimental conditions be situated in the
domain of validity of the analytical study of Clavin & Sun. For small droplets, the
vaporization time is given by the standard D2 law (Law 1982; Williams 1985) which
predicts a lifetime of 55 µs for 4 µm diameter decane droplets in a gaseous bath at
1000 K and 33 µs at 2000 K. The vaporization time is thus short, but not completely
negligible compared to the transit time through the flame which varies with flame
speed from 180 µs to 750 µs.

The mean distance between droplets lies between 0.5 and 1.0 times the flame
thickness d, according to the equivalence ratio and resulting flame thickness. Since
the Lewis number is close to unity, the time needed for fuel vapour to diffuse
a distance equal to the mean droplet separation is a little less than the transit
time in the flame. The flame structure is thus expected to contain a thin vapor-
ization zone followed by a premixed gaseous flame front, see figure 16. However
under these experimental conditions, we found that it was impossible to propa-
gate a flame front in the spray, despite the fact that the global mixture ratio
was within the flammability limits. To obtain flame propagation it was necessary
to add a small amount of gaseous fuel (propane) to the mixture. In order to
ensure spray flame propagation at all equivalence ratios used here, we added a
constant background of propane with an equivalence ratio of 0.27. Moreover the
vapour pressure of decane at room temperature is not negligible and the saturated
vapour in air has an equivalence ratio of 0.13. In the following, the equivalence
ratios stated for the sprays are global ratios comprising the sum of added gaseous
propane (0.27), vaporized decane (0.13) and liquid decane (the rest). However, the
purely gaseous part of the spray, with an equivalence ratio of 0.4, lies outside the
flammability limits.

Concerning the effect of the presence of gaseous fuel on acoustic instability in spray
combustion, we remark that all the fuel is vaporized in the preheat zone and burns
in a premixed chemical reaction zone, see § 5. Thus the instability mechanism for
gaseous combustion, described in Appendix B, can also lead to an instability in the
spray case. Since only liquid fuel can participate in the spray instability mechanism,
replacing liquid fuel by gaseous fuel will decrease the strength of the spray instability,



Primary acoustic instability of flames 169

Geometrical characteristics
Tube length L 1.2 m
Tube diameter 6 0.1 m

Gaseous mixture: propane–air
Thermal diffusivity Dth 2.1 10−4 m2s−1 (in unburnt mixture)
Equivalence ratios Φ 0.7 < Φ < 1.0
Laminar flame speeds UL 0.22 < UL < 0.42 m s−1

Burnt gas temperature Tb 1880 < Tb < 2280 K
Markstein number Ma 4.5

Spray: decane–air
Thermal diffusivity Dth 2.1 10−4 m2s−1 (in unburnt mixture)
Equivalence ratios Φ 0.73 < Φ < 1.1 (liquid + gaseous fuel)
Equivalence ratios Φ 0.33 < Φ < 0.7 (liquid fuel only)
Laminar flame speeds UL 0.20 < UL < 0.38 m s−1

Burnt gas temperature Tb 1865 < Tb < 2260 K
Droplet size D32 3.8 µm
Viscous relaxation time τvis 30 µs (see (A 6))
Decane boiling point 447 K
Decane vaporization

temperature T∗ 316 < T∗ < 328 K
Reduced vaporization

position ξ∗ −4.3 < ξ∗ < −4.1
Reduced activation energy β 15
β(Le − 1) 6
Reduced latent heat `∗ 0.026 (see Clavin & Sun 1991)

Table 1. Values of experimental parameters.

but will have no effect on the contribution of the purely gaseous mechanism. It will
be seen below that, for sprays, the proposed spray mechanism is totally dominant
during onset of acoustic instability which occurs during the early stage of flame
propagation in the tube, but that pressure peaks, characteristic of later stages of the
gaseous mechanism, appear when the spray flame reaches the second half of the tube.

The burning velocities of the same sprays were obtained from an independent
experiment by measuring the flame surface area in a laminar slot burner (Clanet
1995). The burning velocities were found to be of the order of 10% lower than
those of a propane flame having the same total equivalence ratio. The values of the
parameters used in these experiments and the following analysis are summarized in
table 1. The vaporization temperature of the droplets is defined here as the equilibrium
temperature at which the liquid has completely evaporated. Since the mass fraction
of fuel is small, the vaporization temperature is considerably lower than the boiling
point. The reduced latent heat is defined in Clavin & Sun (1991).

The tube is flushed and filled with the appropriate mixture through a stopcock
at the bottom. The tube is then temporarily closed at both ends, for 1–2 min,
until all gas motion has ceased. The sedimentation velocity of 4 µm droplets in air is
calculated to be 350 µm s−1. This velocity is less than the residual velocity of thermally
induced convection currents in the quiescent mixture and no significant stratification
or sedimentation was observed during the time that the gas flow was allowed to settle.
The mixture is ignited at the open end where, according to the Rayleigh criterion, the
presence of a pressure node, δp = 0, initially prevents any acoustic instability from
occurring. The instability then develops as the flame propagates downwards.
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The aim of this study is to determine which of the different theoretical mechanisms
best describes the experimental observations. To compare with theories, we have
measured the growth rate of the instability and the flame position at the onset of the
instability. The acoustic pressure was measured using a piezo-electric sensor at the
base of the tube, a numerical oscilloscope and a microcomputer for data analysis.
The bandwidth of the pressure sensor and amplifier was 1 Hz–100 KHz. The signal
was digitized with 4096 points without filtering. A spectrum analyzer was used to
measure the acoustic losses of the combustion chamber. The flame position and shape
were measured using a gated CCD video camera and also a high-speed film camera
coupled to a pulsed copper vapour laser run at 3000 pulses s−1.

4. Experimental results
4.1. Qualitative observations

The existence of an effect specific to the presence of spray combustion will be
demonstrated by comparison with the case of gaseous combustion. In a tube 1.2 m
long we have observed the following behaviour as a function of the global equivalence
ratio, Φ.

4.1.1. Gaseous combustion

For Φ < 0.7, no sound is produced during the flame propagation. The flame front
has a cellular structure, containing one or more large cells. Figure 19 shows typical
structures. The total flame area is about twice the cross-section of the tube and the
flame propagates steadily downwards at about twice the laminar flame velocity, as
would be expected.

For 0.7 < Φ < 0.75, in the upper half of the tube the flame is cellular but silent,
as above. The fundamental acoustic mode becomes unstable when the flame is in the
lower half of the tube. The acoustic level increases first exponentially, but rapidly
saturates. During the period of saturation, the peak acoustic pressure, measured at
the base of the tube, is between 0.005 and 0.01 bar. In the saturated state of this
primary instability, the flame is quasi-planar and propagates at the laminar flame
speed. The resonant frequency of the tube is a function of the relative lengths of the
regions filled with cold and hot gas, see figure 3. For the 1.2 m tube, the acoustic
frequency at the onset of instability was typically 120 Hz.

For Φ > 0.75, in the upper half of the tube the flame is cellular but always silent, as
above. The fundamental acoustic mode is unstable when the flame is in the lower half
of the tube. The acoustic signal presents two distinct regions: the first corresponds
to the primary instability, described above; the second, in which very high acoustic
levels (up to ±0.2 bar) are reached, corresponds to the parametric instability studied
by Searby & Rochwerger (1991). During the parametric instability, the flame has
deep cellular structures, oscillating at half the acoustic frequency. These structures
greatly increase the mean flame surface area. The flame can propagate ten to twenty
times faster than the laminar flame speed. Close to stoichiometry, the transition
from primary to secondary instability is rapid and continuous. In all cases, only the
fundamental mode of the tube is observed. Typical pressure records and flame images
can be found in Searby (1992).

4.1.2. Spray combustion

For 0.65 < Φ < 0.75, the fundamental acoustic mode becomes unstable in the upper
third of the tube and persists until the end. The acoustic level increases exponentially
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Figure 7. Tomographic cut through a cellular premixed spray flame at the onset of acoustic
instability. Global equivalence ratio = 0.71, UL = 0.18 m s−1.

at first and then rapidly saturates. The saturated acoustic level, measured at the
base of the tube, increases gradually from about 0.01 bar to 0.025 bar as the flame
descends the tube. This level is higher than the corresponding gaseous case. Before
the onset of instability, the flame front has large cellular structures very similar to
those of the gaseous case, see figure 7. During the instability, the flame generally
shows small-amplitude small-scale cells oscillating at half the acoustic frequency,
similar to those observed at the onset of the parametric instability in the gaseous
case. However the amplitude of these structures remains small and the flame front
continues to propagate at about twice the laminar flame speed. This behaviour is
shown in figure 8(a). The acoustic frequency at the onset of instability is typically
85 Hz.

For 0.75 < Φ < 0.95, the first harmonic (typically 240 Hz) becomes unstable in the
upper third of the tube and the fundamental mode appears later in the propagation.
The transition between the two modes is made through a silent zone, the length of
which depends on the equivalence ratio (figures 8 and 9). In some cases the length
of this silent zone reduces to zero. The amplitude of the first harmonic increases
first exponentially and rapidly saturates to a peak level between 0.01 and 0.02 bar.
During this saturated state, the flame again has small-amplitude oscillating cells and
continues to propagate at about twice the laminar flame speed. Some time after the
transition to the fundamental frequency of the tube, the acoustic level increases very
rapidly to a much higher level, between 0.1 and 0.25 bar, with deep oscillating cells.
This secondary instability has the same characteristics as the parametric instability
described previously for gaseous flames. We will not be concerned with this effect
here.

For 0.95 < Φ < 1.1, the acoustic signal contains, successively, three different
frequencies. The second harmonic of the tube, at ≈ 400 Hz, is unstable very early
in the propagation and then transits to the first harmonic, at ≈ 260 Hz, which itself
transits to the fundamental mode in the lower third of the tube. Such behaviour is
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Figure 8. Record of the acoustic pressure for spray flame (decane), in a 1.2 m tube: (a) equiva-
lence ratio = 0.7, laminar flame speed = 0.17 m s−1; (b) equivalence ratio = 0.8, laminar flame
speed = 0.23 m s−1. The instability changes frequency at time = 1.15 s.

shown in figure 9(b). The first and second harmonics saturate at a peak level around
0.25 bar. The parametric instability is triggered shortly after the transition to the
fundamental frequency; however there is no clear discontinuity between the end of
the primary acoustic instability at the fundamental frequency and the onset of the
secondary parametric instability. During the saturated states the flame propagates
at two to three times the laminar flame speed. During the parametric instability the
flame propagates at ten to twenty times the laminar flame speed.

The different positions in the tube for which the various harmonics are unstable
are shown as a function of the equivalence ratio in figure 10 for gaseous and
spray combustion respectively. Other tubes with various lengths have been used; the
behaviour is qualitatively similar, only the limiting values of the equivalence ratio for
the change of regime are modified. In the case of spray combustion, increasing the
length of the tube for a given equivalence ratio also increases the harmonic number
of the first unstable frequency. For example in a tube 5 m long, the first unstable
frequency was the 9th harmonic. This was never observed with gaseous combustion
for which the unstable frequency was always the fundamental for all tube lengths. In
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Figure 9. Record of the acoustic pressure for spray flame (decane), in a 1.2 m tube. (a) Equivalence
ratio = 0.9, laminar flame speed = 0.3 m s−1. There is a period of silence between the change of
frequency. (b) Equivalence ratio= 1.1, laminar flame speed = 0.36 m s−1. The instability appears
successively at three different frequencies.

the following sections we will be concerned only with the initial exponential part of
the growth of the primary acoustic instability and the position in the tube at which
it occurs.

4.2. Comparison of measured and calculated growth rates

In this section, we present the experimental data for growth rates both in dimensional
units (tables 2 and 3) and in a form suitable for comparison with the theoretical
values, calculated for the different mechanisms presented in § 2.

As already mentioned, thermo-acoustic instabilities result from a coupling between
the acoustic modes, which depend on the geometry of the combustion chamber, and
the heat release rate, which is a function of the internal structure of the front and of the
total surface area of the flame. The experimental parameters controlling the instability
are: the length of the tube, which imposes the available acoustic frequencies; and the
equivalence ratio of the mixture which governs the mean local heat release rate. The
shape of the flame front is a free parameter. The growth rate of the instability will be
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Figure 10. Regions of acoustic instability for gaseous flame (a) and spray flame (b). The bar marks
the position in the tube at which the acoustic instability first occurs. The flame propagates from the
open end (r = 1) to the closed end (r = 0). The cross-hatching indicates the frequency. For the spray
flame, higher harmonics are excited in the upper region of the tube as the flame speed is increased.

presented as a function of the dimensionless frequency, ωτt where ω is the angular
acoustic frequency and τt the transit time in the flame front, defined by τt ≡ Dth/U2

L.
The dimensionless parameter, ωτt, can be changed in discrete steps by changing the
length of the tube, L. It can also be varied continuously by changing the flame speed,
UL. In practice we use the latter.

The growth rates for various experimental conditions were obtained from analysis
of the exponential part of the primary acoustic instability using high-resolution
recordings such as shown in figure 11. Only the exponential part of the signal was
retained for analysis. There was no difficulty in discriminating this region from the
region affected by saturation. These observed growth rates, τ−1

obs, were then corrected
for acoustic losses, τ−1

loss, see Appendix A, calculated for the observed position of the
flame in the tube, to obtain the experimental linear growth rate, τ−1

exp ≡ τ−1
obs + τ−1

loss that
would be measured in the absence of acoustic losses. The numerical values are given
in tables 2 and 3 along with the flame speed, the frequency and the position in the
tube at which the instability first occurred.

In the following we will present the ratio of the experimental growth rate, τ−1
exp, to
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Figure 11. Detail of early stage of acoustic instability showing measured acoustic pressure (symbols)
and fitted exponential-cosine function (continuous line). The dotted line is the envelope of the
fitted exponential growth. The onset of saturation is apparent at 0.54 s. Decane–air spray flame.
Equivalence ratio = 0.75, laminar flame speed = 0.2 m s−1.

UL f 1/τobs 1/τloss 1/τexp

φ (m s−1) r (Hz) (s−1) (s−1) (s−1)

0.71 0.23 0.44 127.3 2.8 4.4 7.2
0.72 0.24 0.44 126.8 4.5 4.3 8.8
0.75 0.26 0.46 123.5 3.7 4.1 7.8
0.77 0.28 0.54 112.0 4.7 3.3 8.0
0.80 0.30 0.59 105.0 7.7 3.0 10.7
0.82 0.31 0.49 119.0 8.6 3.7 12.3
0.84 0.33 0.56 109.3 13.6 3.2 16.8
0.84 0.33 0.53 113.7 11.3 3.4 14.7
0.87 0.35 0.59 105.5 12.7 3.0 15.7
0.89 0.36 0.62 102.3 7.3 2.9 10.2
0.90 0.37 0.61 103.2 11.9 2.9 14.8
0.91 0.38 0.54 112.4 18.7 3.4 22.1
0.92 0.38 0.56 109.2 12.3 3.2 15.5
0.95 0.40 0.59 105.0 16.3 3.0 19.3
1.00 0.42 0.54 111.7 20.7 3.3 24.0

Table 2. Observed growth rate, acoustic losses and total experimental growth rate of acoustic
instability for propane–air flames, L = 1.22 m, 6 = 10 cm.

the calculated growth rate, τ−1
inst, for the various coupling mechanisms, see equations

(2.18) and (2.19), as a function of the reduced frequency, ωτt. The structure functions
F and G are computed from equations (2.17), (2.20) and (2.21).

4.2.1. Comparison for direct coupling with pressure and temperature field

The comparison with the pressure coupling described by Clavin et al. (1990) is
shown in figure 12. The theoretical growth rate for this mechanism, used here as
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UL f 1/τobs 1/τloss 1/τexp

φ (m s−1) r (Hz) (s−1) (s−1) (s−1)

0.70 0.17 0.80 84.5 13.3 5.0 18.3
0.70 0.17 0.79 84.8 13.3 5.0 18.3
0.70 0.17 0.80 84.5 14.3 5.0 19.3
0.71 0.18 0.78 86.1 15.1 5.2 20.3
0.71 0.18 0.76 87.8 17.7 5.3 23.0
0.74 0.19 0.73 268.6 14.7 13.2 27.9
0.75 0.20 0.81 221.0 24.4 11.0 35.4
0.76 0.21 0.86 239.4 27.8 11.0 38.8
0.79 0.23 0.88 233.5 26.8 11.0 37.8
0.81 0.25 0.87 237.0 29.8 11.6 41.4
0.84 0.27 0.88 234.8 27.0 11.7 38.7
0.86 0.29 0.89 232.0 26.0 11.9 37.9
0.89 0.30 0.88 234.1 27.7 12.3 40.0
0.93 0.34 0.88 235.1 28.2 13.0 41.2
0.95 0.35 0.88 424.5 26.5 30.8 57.3
1.03 0.38 0.91 415.1 35.6 31.2 66.8
1.14 0.35 0.87 427.4 30.0 37.0 67.0

Table 3. Observed growth rate, acoustic losses and total experimental growth rate of acoustic
instability for decane–air spray flames, L = 1.22 m, 6 = 10 cm.

a reference, was calculated using a reduced activation energy β = 10 ± 2.5 and
β(Le − 1) = 4. The sensitivity of the theoretical growth rate to these parameters is
not strong. The burnt gas temperatures and density were calculated numerically using
data from the Sandia Chemkin package, Kee, Miller & Jefferson (1980), Kee, Rupley
& Miller (1990), assuming equilibrium chemistry for propane–air flames. Laminar
flame speeds were taken from Yamaoka & Tsuji (1984). It can be seen that the
experimentally observed growth rates, corrected for acoustic losses from the tube,
are two to three orders of magnitude higher than the growth rates calculated for
this mechanism. This is equally true for both gaseous and for spray combustion.
Moreover, it can also be seen that the growth rates in the spray are, in general, an
order of magnitude greater than the gaseous growth rates. We conclude that the direct
coupling between the combustion rate and the pressure or temperature fluctuations
in the acoustic wave, first proposed by Dunlap, is certainly not the mechanism
responsible for the observed instability.

4.2.2. Comparison for coupling with the acceleration field: cellular flames

Pelcé & Rochwerger (1992) have calculated the growth rate of the acoustic instabil-
ity driven by the effect of the acoustic acceleration on the geometry of the flame front.
They have treated the case of a weakly cellular planar flame propagating downwards
at the threshold of the planar flame instability where the value of the marginally
unstable wavenumber is a simple function of the Markstein and Froude numbers
(Pelcé & Clavin 1982; Searby & Quinard 1990), leading to a simplification of the
dispersion relation between complex frequency and wavenumber. Experimentally we
find that such a weakly cellular flame (equivalence ratio ≈ 0.55) is acoustically stable.
The acoustic instability occurs only for faster flames which have strong nonlinear
cells whose size is much greater than that of the most unstable wavelength predicted
by linear theory.
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Figure 12. Ratio of the experimentally measured growth rates of the acoustic instability to
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We have extended and extrapolated the work of Pelcé & Rochwerger in order
to apply their linear analysis for weak cells to our experimental configuration of
nonlinear cells far from the threshold of the planar flame instability. The technical
details are given in Appendix B. Although this extended theory is not strictly valid for
the amplitude of the cells observed in our experiments, we still expect the calculation
to give the correct order of magnitude for the growth rate of the instability associated
with this mechanism.

The ratio of the experimentally measured growth rates to the calculated growth
rates for this mechanism is shown in figure 13. For gaseous combustion, this ratio is
close to unity and we conclude that this model provides a satisfactory explanation
of our experimental gas-phase results, despite the fact that we have compared the
results of a small-amplitude theory with observations on large-amplitude cells. This
mechanism is probably the one which is responsible for the primary acoustic instability
in gaseous combustion. However, for spray combustion, the experimentally measured
growth rates are more than an order of magnitude higher than predicted by this
mechanism and the comparison is not satisfactory.

4.2.3. Comparison for coupling with the acceleration field: spray flames

Figure 14 shows the comparison of our experimental results with the predictions
of Clavin & Sun for the spray coupling mechanism. Since both the transfer function,
Tr, and the acoustic structure function, G, for this mechanism are expected to
change sign, we compare the experimental and theoretical values of the reduced
transfer function, rather than the ratio of measured to calculated growth rates. The
experimentally measured growth rates were corrected for acoustic losses, including the
losses associated with the presence of droplets, see table 3. They were then normalized
by the characteristic acoustic time scale, L/co (see (2.19)) and finally reduced by the
value of the acoustic structure function, G (see (2.21)), calculated for the position in
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the tube at which the acoustic instability first occurs. This experimentally determined
transfer function was then further reduced by 0.5 β (τvis/τt)(Tb − To)/To, where we
have taken β=15. Tb was assumed equal to the value of a propane flame having the
same flame speed, the viscous relaxation time of the droplets, τvis, was calculated from
(A 6) for 3.8 µm diameter droplets and τt ≡ Dth/U2

L was calculated from the measured
spray flame speeds. The theoretical transfer function was calculated using parameter
values given in the caption to figure 14.

It can be seen that the experimentally determined values of the transfer function
for this mechanism are of the same order of magnitude as the theoretical values.
However the experimental points do not lie exactly on the theoretical curve, but seem
to be shifted towards smaller values of reduced frequency, ωτt. Moreover the values
obtained when different harmonic frequencies of the tube appeared do not lie exactly
on the same curve. The theoretical transfer function is negative for values of ωτt less
than 0.45, indicating that the system should be unstable only for ωτt > 0.45. The
experimental points show that the system is actually unstable for ωτt > 0.3. However
no instability was ever observed for reduced frequencies smaller than this value. If the
tube length was increased and/or the flame speed increased so as to lower the value
of ωτt, it was found that the instability always occurred on a harmonic frequency of
the tube such that ωτt > 0.3, indicating the existence of a cut-off at this frequency.
As already mentioned in § 4.1.2, the first unstable frequency in a 5 m tube was the 9th
harmonic.

This change in harmonic number with change in laminar flame speed is presented
more clearly in figure 15 using non-dimensional coordinates. In this figure the hor-
izontal axis represents the transit time of the flame, τt ≡ Dth/U

2
L, reduced by a

characteristic acoustic time scale of the chamber, τa ≡ L/c0. This ratio τt/τa varies as
the inverse of the square of the laminar flame speed. The vertical axis represents the
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Figure 14. Comparison of theoretical transfer function for the spray mechanism of Clavin & Sun
and the transfer function deduced from the experimentally measured growth rates of the acoustic
instability of the decane spray. The theoretical curve was calculated using the following values
(see table 1) : β = 15, β(Le − 1) = 6, dimensionless position of vaporization zone, χ∗ = −4.2,
dimensionless latent heat, `∗ = 0.026. The experimental results were reduced using a viscous
relaxation time, τvis = 30 µs for droplets 3.8 µm diameter.

angular frequency of the first unstable mode, ω, reduced by the flame transit time τt.
The acoustic time of the chamber is fixed by the length of the tube and the acoustic
frequency of the instability depends on the harmonic number that is chosen by the
system. In our experiment, the transit time of the flame is decreased by increasing the
laminar flame speed. For the gaseous case (propane/air), the instability always occurs
at the fundamental frequency of the tube for all flame speeds. The locus of ωτt for
the propane flame thus decreases monotonically towards zero as the flame speed is
increased. No sound is emitted for slow flames such that τt/τa > 0.11 in this 1.2 m
tube. However, in the case of spray combustion the fundamental mode of the tube
is excited initially only for slow flames (τt/τa > 0.15) whose transit time is such that
ωτt > 0.3. As the flame speed is increased, ωτt decreases until it reaches a limiting
value close to 0.3. When the flame speed is further increased (τt/τa < 0.15), the first
overtone of the chamber is excited instead of the fundamental frequency and thus
ωτt jumps to a higher value. As the flame speed is further increased, the value of
ωτt decreases until the limiting value of 0.3 is again reached (τt/τa = 0.05). At this
stage a further increase in the flame speed (τt/τa < 0.05) causes the second overtone
of the chamber to be excited, with a corresponding upward jump in the value of
ωτt.

The fixed value, ωτt = 0.3, of the reduced cut-off frequency observed in our
experiments for flames of different equivalence ratio in different tubes, is the signature
of a relaxation mechanism involving unsteady effects of the internal structure of the
flame. In order to explain this fixed cut-off frequency, the theoretical analysis initiated
by Clavin & Sun (1991) is revisited in the following section.
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Figure 16. Model structure of the spray flame. T is the temperature and Y the mass frac-
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spray, (II) a thin vaporization zone, (III) a gaseous premixed zone, (IV) a thin chemical reac-
tion zone, (V) downstream zone of burnt gas. (a) Thermal equilibrium model of vaporization.
(b) Non-equilibrium model of vaporization.

5. Velocity coupling in spray combustion
We will limit our discussion to the analysis of a model of minimal complexity, but

sufficient to show the origin of the change of sign of the transfer function and to
compute the cut-off frequency with a good approximation.
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5.1. Flame models and qualitative analysis

We consider a fuel-lean mixture of fuel droplets, whose radius, rd, is sufficiently small
for the vaporization time to be negligible compared to the transit time, τt, of the fluid
through the flame thickness. The liquid fuel is then fully vaporized before burning.
This is typically the case at atmospheric pressure for droplets whose radius is less
than a few microns. Tomographic cuts of our flames show that the droplets disappear
completely before entering the luminous reaction zone and so the structure of our
flames is in satisfactory agreement with this hypothesis. We use the simplest model of
gas-phase combustion (Zeldovich & Frank-Kamenetskii 1938), in which the reactants
are transformed to burnt products in a single-step exothermic reaction, characterized
by an activation energy large enough to confine the reaction zone to a thin sheet
at high temperature close to Tb (flame temperature). We will also assume that the
temperature at which liquid droplets can be fully vaporized, T∗, is much lower than
Tb. Typically, at ordinary conditions, T∗ ≈ 400 K, and Tb ≈ 2500 K. We will see later
that the cut-off frequency, ω∗, is of the order of the inverse of the time, τ∗, taken for
a fluid particle to travel from the isotherm T∗ to the isotherm Tb

ω∗τ∗ = O(1). (5.1)

The theoretical analysis is greatly simplified by the assumption that T∗ is close to the
fresh gas temperature To,

T∗ − To
Tb − To � 1. (5.2)

This is equivalent to the assumption that the distance between the vaporization
layer at T∗ and the reaction layer at Tb is much larger than the characteristic flame
thickness, d, defined as the distance between Te and Tb, where Te is defined as
(Te − To)/(Tb − To) ≡ 1/e, see figure 16. In this limit, τt � τ∗ and

ω∗τt � 1, (5.3)

allowing us to limit our study to the low-frequency domain, ωτt � 1. However,
in order to pick up the cut-off frequency, our low-frequency analysis must include
the dominant unsteady effects (5.1), ωτ∗ = O(1), contrary to the quasi-steady-state
approximation used in the first part of Clavin & Sun (1991). In mathematical terms,
we use the distinguished limit,

τ∗/τt →∞, ωτt → 0, ωτ∗ = O(1). (5.4)

We further simplify the analysis with the assumption that the vaporization is confined
to a thin sheet at temperature T∗. This is the case for the two following conditions:

(a) the vapour pressure is a strongly increasing function of temperature;
(b) the liquid and gas phases are in thermodynamic equilibrium.

The first assumption is satisfied for most liquid fuels and the second is fairly accurate
when the diffusion time of vapour between neighbouring droplets, τdiff , is much
smaller than the transit time, τdiff � τt. Figure 16(a) shows the five zones of the
flame structure considered by Clavin & Sun (1991). Y is the mass fraction of fuel
vapour in the gas phase. The fuel vapour concentration is negligible in zone (I). The
vaporization zone (II), and the chemical reaction zone (IV), are negligibly thin. The
subscript ∗ indicates the value of a variable within the vaporization zone. T∗ is the
temperature at which the vapour partial pressure of liquid fuel is sufficient to vaporize
all the fuel. This temperature is lower than the boiling point of liquid (≈ 400 K) if
the mass fraction of fuel is sufficiently small. In conclusion, this model is valid for



182 C. Clanet, G. Searby and P. Clavin

a fuel-lean mixture of fuel droplets whose radii are of the order of or smaller than
1 µm and for a liquid mass fraction of a few percent Yo ≈ 5%.

This does not correspond exactly to our experimental conditions where Yo 6 5%
and rd ≈ 2 µm. These values were chosen to strengthen the thermo-acoustic instability
of spray combustion. The strength of this mechanism is proportional to τvis/τt (see
(2.16)) with τvis increasing as r2

d (see (A 6)). The particle radius must be large for
the mechanism to be strong. As a consequence, the equilibrium condition between
gas and liquid phases, τdiff � τt, is no longer fully satisfied. This is due to the fact
that, for a given mass fraction, the mean distance between droplets increases with the
radius. The more general case for droplets of arbitrary size cannot be fully resolved
analytically and requires the help of numerical analysis, see for example Buckmaster
& Clavin (1992) and also Buckmaster (1993).

In order to fully investigate analytically the effect of this non-equilibrium, we
introduce a second model. The vaporization is still confined in a thin zone at
the vaporization temperature T∗, but the fuel vapour may now coexist with the
liquid droplets and freely diffuse into zone (I) where both the vaporization and the
condensation rates are frozen. The corresponding flame structure is shown in figure
16(b). Our experimental conditions lie between the situations represented by these
two models. In the low-frequency limit (5.4), the theoretical analysis presented below
shows that the cut-off frequency is independent of the details of the flame structure.
The same expression is obtained for both models.

The interaction of the acoustic waves with the internal structure of the flame is
easily understood from figure 16. The periodic acceleration associated with a plane
acoustic wave propagating normal to the flame surface will give rise to a phase lag
between the velocity of the droplets and the velocity of the gas. This phase lag creates
a periodic modulation of the flux of fuel vaporized in zone (II). This unsteady flux
of vaporized fuel is transported by convection and by diffusion through the gaseous
zone (III) and is consumed at a later time in zone (IV), producing a modulation of
the combustion rate. The relaxation equation for the droplet velocity, vd,

u− vd =
iωτvis

1 + iωτvis
u ≈ iωτvisu, (5.5)

shows that, at low frequency ωτvis � 1, the flux of vaporized fuel is in phase
quadrature with the acoustic velocity, u, and hence out of phase with the acoustic
pressure in the (first quarter-wavelength of the) tube. For a lean mixture, the heat
release rate in (IV) is proportional to the flux of gaseous fuel entering this zone. Hence,
to satisfy the Rayleigh criterion, it is necessary that the flux sees a further phase shift
of at least π/2 during the transit from zone (II) to zone (IV). The residence time of
the fuel vapour in (III) is τ∗. If the acoustic frequency is very low, ωτ∗ → 0, zone
(III) is in quasi steady state and there is no phase shift between the fuel vaporized in
(II) and consumed in (IV). The fluctuations of pressure and heat release rate are out
of phase and there is no thermo-acoustic instability. This is shown by the negative
values of the transfer function in the low-frequency region in figures 2(b) and 14. For
the instability to occur, the frequency must be sufficiently high so that zone (III) is
unsteady, ωτ∗ = O(1), and introduces a phase shift of more than π/2. The time delay
between vaporization in zone (II) and combustion in zone (IV) is essential for the
Rayleigh criterion to be satisfied.

In our experiments, a small amount of gaseous fuel was added to the initial mixture.
This will slightly affect the strength of the thermo-acoustic instability but does not
modify the cut-off frequency. This is easily understood from the reasoning above. In
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order to simplify the presentation, such details are not included in the theoretical
analysis presented below.

5.2. Quantitative analysis

We assume that the mass fraction of droplets is sufficiently small that they do not
affect the thermophysical properties of the mixture. This is the case in our experiments,
where the liquid mass fraction is typically 3–4%. In order to simplify the presentation,
we neglect the effect of the latent heat of vaporization and the effect of a difference
between mass and heat diffusivities, which are proven to have only a weak effect on
the value of the cut-off frequency. However we will take account of the temperature
dependence of the diffusivity, neglected by Clavin & Sun (1991). The details of the
corresponding calculations are given in Appendix C. The quantitative solution to the
problem is obtained by solving the unsteady energy and mass conservation equations
for the fuel, (C 1) and (C 2). The first step in the analysis is to express the instantaneous
distribution of the enthalpy of the gaseous phase, h = CpT +QY , where Q is the heat
of reaction of the fuel, in terms of the variation of the flame speed. The linear equation,
for unity Lewis number, is obtained by summing (C 1) and (C 2). It is to be solved
in zones (III), (IV) and (V). Using the mass-weighted space coordinate, χ (see (C 3)),
and the notation of (C 6) in which the bar represents the stationary part of a variable
and the hat represents the fluctuating part, this equation takes the form

iωĥ+ ūb
d

dχ
ĥ− d

dχ

(
D̄ d

dχ
ĥ

)
= 0, (5.6)

where D is a mass-weighted diffusivity, defined in (C 5), and we have used the property
of the steady-state solution, dh̄/dχ = 0. A general analysis is given in Appendix C.
We will limit the presentation in the text to the simpler case where the temperature
dependence of the mass-weighted diffusion coefficient, D, is neglected. In the low-
frequency limit, the solution of (5.6) which satisfies the downstream condition of
non-divergence in the burnt gas, χ→ +∞, yields an unsteady enthalpy profile which

can be expressed in terms of the unknown fluctuation in flame speed, Ûb, as

χ > χ∗ : ĥ(χ) = 2Cp
(Tb − To)

β

Ûb

ūb
exp

(
−i
ω

ūb
χ

)
, (5.7)

with Ub(t) ≡ ub − dα/dt, where ub is the velocity of the gas crossing the reaction
zone (gas velocity in burnt gas), α is the coordinate of the reaction sheet (zone (IV))
and β is the reduced activation energy, see (2.12), Equation (5.7) is valid downstream
from the vaporization zone (II) when β � 1, ωτt � 1 and ωχ∗/ūb = O(1). A more
general solution including the effects of the temperature dependence of the diffusion
coefficient, D, is given in (C 19).

The second step in the analysis is to use the conservation of enthalpy fluctuations
through the vaporization zone (II) at x = α∗ (i.e. at χ = χ∗) to express the fluc-
tuations of the flame speed in terms of the fluctuations of the gas velocity at the
vaporization zone. For negligible latent heat, the temperature and its gradient are
continuous through the vaporization zone and enthalpy conservation here reduces to
the conservation of the mass flux of fuel. Moreover, in the limiting case (5.1), the
diffusive fluxes are negligible and fuel mass conservation through zone (II) reduces
to the balance of the convective flux of fuel vapour with the mass flux of liquid into
zone (II), resulting from the difference of liquid and gas velocities, v̂d − û∗,

Yoρ∗ (v̂d − û∗) = ρbūbŶ∗+, (5.8)



184 C. Clanet, G. Searby and P. Clavin

where Yo is the liquid mass fraction and Ŷ∗+ is the fluctuation of the mass fraction
of fuel vapour at the downstream side of the thin vaporization layer (II). In the low-
frequency approximation (5.4) in which zone (I) is in a quasi-steady state, equation
(5.8) is valid for the two models presented in § 5.1, see figure 16. The detailed
calculations are given in Appendix C. In the limit (5.2) the fluctuations of temperature

are negligible in zone (II) and so, to leading order, ĥ∗+ = CpT̂∗+ + QŶ∗+ ≈ QŶ∗+ and

Ŷ∗+ is given by (5.7). Equation (5.8) thus yields

ρ∗ (v̂d − û∗) =
2

β
ρb Ûb exp

(
−i
ω

ūb
χ̄∗
)
. (5.9)

The fluctuation of flame speed is obtained as a linear function of û∗, the gas velocity
fluctuation at zone (II), by using the relaxation equation (5.5), yielding, for ωτvis � 1,

Ûb = −iωτvis
ρ∗
ρb

β

2
û∗ exp

(
i
ω

ūb
χ̄∗
)
. (5.10)

The leading order of the unknown transfer function, defined by Tr ≡ (ûb − û∗)/û∗
(see § 2.2) is then obtained from (5.10) by noticing that, according to the definition

Ûb ≡ (ûb−dα̂/dt) and the equation of evolution dα̂/dt = û∗, one finds Ûb = (ûb− û∗),
so that

Tr = − (iωτvis)

(
β

2

ρ∗
ρb

)
exp

(
i
ω

ūb
χ̄∗
)
. (5.11)

According to (5.11), the validity of the asymptotic analysis in the limit β → ∞ is
ensured in the parameter range corresponding to

(ωτvis)

(
β

2

ρ∗
ρb

)
= O(1), (5.12)

from which condition (C 18) follows. Condition (5.12) is verified well in our experi-
ments: τvis ∼ 3.10−5 s, ω ∼ 5.102 s−1, ρ∗/ρb ∼ 6, β ∼ 15, yielding 0.67 for the numerical
value in (5.12).

According to (2.19), the instability can develop in the upper part of the tube, where
G > 0, only if Im(Tr) > 0. Applying this condition to (5.11), it is seen that the cut-off
frequency, ω∗, is given by

ω∗τ∗ =
π

2
with τ∗ =

|χ̄∗|
ūb
. (5.13)

In dimensional coordinates (see (C 3)) we find

ω∗
ρbūb

∫ α

α∗
ρ̄(x)dx = ω∗

∫ α

α∗

dx

ū(x)
=
π

2
, (5.14)

which can also be written, introducing the transit time, τt ≡ d/UL = Dth(To)/U
2
L, as

(ω∗τt)
1

d

∫ α

α∗

UL

ū(x)
dx =

π

2
. (5.15)

This result, (5.13)–(5.15), highlights two points.
(a) If the distance separating the combustion zone, x = α, from the vaporization

zone, x = α∗, is sufficiently large, |α− α∗| � d, the cut-off frequency lies effectively
in the low-frequency range, ω∗τt � 1, as was anticipated at the beginning of our
analysis.
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(b) In this frequency range, the phase lag is essentially due to the convective flux. The
unsteady effects of molecular and heat diffusion on the value of the cut-off frequency
are negligible. This cut-off frequency is then controlled only by the transit time of
gas particles from the vaporization zone to the combustion zone,

∫ α
α∗[ū(x)]−1dx, which

is much larger than the characteristic transit time associated with the steady-state
temperature profile, ∫ α

α∗

dx

ū(x)
� Dth (Tb)

ū2
b

, (5.16)

Noticing that, when D = Const., ū2
b/Dth(Tb) = U2

L/Dth(To), the cut-off frequency takes
the simpler form

ω∗τt =
π/2

ln
(
(Tb − To)/(T∗ − To)) (5.17)

with τt ≡ Dth(To)/U2
L.

To summarize, equation (5.17) is valid for both flame models (see figure 16) when
the vaporization temperature, T∗, is sufficiently close to the unburnt gas temperature,
T∗ → To. In this limit, the leading order of the reduced cut-off frequency, ω∗τt, is
found to be independent of the details of the flame structure and, due to the logarithm
in equation (5.17), its value depends only weakly on the temperatures T∗, To and Tb.
It is shown in Appendix C that (5.17) is independent of the value of the latent heat
and is also valid for arbitrary temperature dependence of the thermal diffusivity, Dth.

For our experimental conditions, To = 295 K, 1865 < Tb < 2260 K, 316 < T∗ <
328 K, equation (5.17) gives 0.36 < ω∗τt < 0.38, reasonably close to our experimental
result ω∗τt = 0.3, see figures 14 and 15. This value of the cut-off frequency is small,
but not negligibly small, as required by the assumptions leading to (5.17). It would
be possible to carry out a perturbation analysis to calculate higher-order corrections
to (5.17). However this would not be very useful since, contrary to the leading-order
term, the corrective terms depend strongly on the details of the flame structure.

6. Conclusions
The comparison of theoretical analyses with the experimental results presented here,

concerning the linear growth rate, shows that the primary acoustic instability of flames
propagating in tubes is due to a velocity coupling, but of a very different nature in
gaseous and spray combustion. In gaseous combustion the velocity coupling involves
modifications to the geometry of the flame front, whereas in spray combustion the
coupling involves modifications to the internal structure of the flame front.

For premixed spray combustion, the mechanism of velocity coupling to the geometry
of the flame front can also produce a primary instability, but experimentally it is seen
that, for a droplet radius of a few microns, the spray mechanism is an order of
magnitude stronger than the gaseous mechanism and the latter is totally dominated
by the former. At a later stage in flame propagation, a secondary instability is observed
in both the gaseous and spray cases. This secondary instability is probably driven by
the gaseous parametric mechanism described by Searby & Rochwerger (1991), but
has not been investigated here.

This thermo-acoustic instability of the spray is an interesting physical example
of an instability resulting from the coupling of two structures characterized by very
different length scales: several metres for the acoustic wavelength and ≈10−4 m for the
flame thickness. However, due to the small Mach number of the flame propagation
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speed, the characteristic time scales are similar: ≈ 10−3 s for the acoustic time and
≈10−4 s for the characteristic time to cross the flame structure, yielding ωaτt ∼ 10−1.
For the Rayleigh criterion (phase relationship) to be satisfied, it has been shown
that the existence of a relaxation mechanism is necessary for the development of
the instability in a spray. The signature of this inner relaxation process has been
shown through our experimental results by the existence of a cut-off frequency for
the instability, corresponding to a lower bound on the reduced frequency ωτt. The
corresponding critical value was found experimentally to be ωτt ≈ 0.3 for our spray
flames of decane droplets in air. A simple theoretical analysis of this phenomenon has
been given. It shows that the critical value, given by (5.17), is universal and depends
only weakly on the nature and equivalence ratio of the fuel through a logarithmic
function of the vaporization and burnt gas temperatures.

This work was carried out with financial support from the Société Européene de
Propulsion and the Centre National d’Etude Spatiales, contract number 92.0075G,
and from the French DRET, contract number 92/0074. The authors wish to thank J.
Minelli and F. Abetino for their technical assistance.

Appendix A. Acoustic losses
Acoustic losses depend on the geometry of the combustion chamber, on the nature

of the gaseous medium, on the presence of droplets and also on the location of
the interface between cold and hot gases. The combustion chamber is cylindrical
(diameter 6 and length L), closed at one end and open at the other. The geometry
being fixed, we first consider the homogeneous case with no interface. We study both
experimentally and theoretically the acoustic losses with and without droplets. The
results are then extended theoretically to the case with an interface.

The acoustic energy per unit volume, εv , is related to the fluctuations of velocity,
δu, and pressure, δp, through the relation (Landau & Lifshitz 1986)

εv = 1
2
ρδu2 + 1

2
δp2/(γp). (A 1)

The first term in (A 1) represents the kinetic energy of the fluctuations and the
second term their internal energy. Averaged over an acoustic cycle, the contribution
of these two terms is the same and it follows that the averaged acoustic energy of the
combustion chamber is

ε =

∫ ∫ ∫
ρδu2d3r (A 2)

In the case without droplets, this energy is mainly dissipated, at the open end of the
tube through radiative losses, and at the wall through diffusive losses.

Radiative losses: At the open end, the fluctuations of velocity are maximum and
the tube behaves as a source of gas of strength S(δu)o, where S = π62/4 and (δu)o
represents the velocity fluctuations at the open end. It follows that the total intensity
of the sound emitted is (Landau & Lifshitz 1986)

˙εrad =
ρS2(δ̇u)2

4πc
. (A 3)

From (A 2) and (A 3) the characteristic time of radiative damping, 1/τrad ≡ ˙εrad/ε, can
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be expressed as

1

τrad
=

1

8

(ω6)2

cL
. (A 4)

The radiative losses are proportional to ω2 and thus are nine times higher for the
first harmonic than for the fundamental mode.

Wall losses: These losses originate in the presence of thermal and viscous boundary
layers at the wall. Considering only the lateral walls, the damping rate related to these
diffusive processes is

1

τwall
=
√

8
(ωDth)

1/2

6
[(γ − 1) + Pr1/2], (A 5)

where Dth is the thermal diffusivity and Pr the Prandtl number. The first term in the
brackets of (A 5) is related to the thermal boundary layer and the second one to the
viscous layer. For diffusive losses, the damping rate is proportional to ω1/2. The large
aspect ratio of our combustion chamber allows us to neglect the diffusive losses at
the closed end.

Diffusive losses which are associated with the presence of droplets: When the
acoustic wave propagates in a spray, new gradients arise around the droplets and
introduce three new damping mechanisms associated with the diffusion of momentum,
thermal energy and mass. These mechanisms are associated with three characteristic
times, τvis, τther and τmass, respectively:

τvis =
2

9

ρd

ρgas

r2
d

ν
, τther =

1

3

ρd

ρgas

r2
d

Dth
, τmass =

1

3

ρd

ρgas

r2
d

Dm
. (A 6)

In these expressions, ρd is the density of the droplets and rd is their radius; ν, Dth
and Dm represent the kinematic viscosity of the gas, the thermal diffusive coefficient
in the gas and the mass diffusive coefficient of the vapour in the gas respectively.
Following Marble & Candel (1975), the reduced damping rate, 1/(ωτdrop), due to the
droplets can then be expressed as the sum of three Lorentzian functions centred on
the characteristic times presented above:

1

τdrop
≈ ω

[
xl

ωτvis

1 + (ωτvis)2
+ c1xl

d1ωτther

1 + (d1ωτther)2
+ c2xv

d2ωτmass

1 + (d2ωτmass)2

]
. (A 7)

In this expression, xl is the liquid mass fraction, xv the vapour mass fraction, and
c1, d1, c2 and d2 are four characteristic constants which are lengthy functions of the
thermodynamic properties of the two phases and are given in Marble & Candel
(1975). In our experiments the numerical evaluations give typically c1 ≈ 0.9, d1 ≈ 2,
c2 ≈ 3× 10−3 and d2 ≈ 15.

The total acoustic loss, 1/τloss, associated with these different mechanisms is given
by:

1

τloss
≡ 1

τrad
+

1

τwall
+

1

τdrop
. (A 8)

This characteristic damping time can be measured experimentally, using a pulse
generator and a loudspeaker placed outside the tube at the open end (typically one
diameter outside) and a pressure sensor placed at the closed end. Typically, the energy
spectrum obtained presents several peaks corresponding to the different harmonics
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Figure 17. Comparison between the acoustic losses measured and calculated from the model, xl
and xv are the liquid and fuel vapour mass fractions respectively.

of the tube. The shape of each peak follows the law

|δp̂n(ω)|2 =
4τ2

loss,nδp
2
n

1 + 4τ2
loss,n(ωn − ω)2

, (A 9)

where n is the harmonic number, ωn its frequency, δpn its amplitude and τloss,n,
the characteristic damping time at this frequency. Equation (A 9) has been used to
measure the damping rate at each harmonic frequency ωn. Figure 17 presents the
comparison between the measured values of the damping rate and the values expected
from the analysis presented above for the cases with and without droplets. Except
for the fundamental mode, all values agree within 10%. The reason for the relative
discrepancy observed on the fundamental mode is not clear.

When the flame front propagates in the combustion chamber, it is not possible to
measure the acoustic losses experimentally since the system is not passive but has
internal gain. Consequently, we have evaluated the characteristic frequencies and the
total acoustic losses, as a function of the flame position, using a two-zone calculation
for a passive system (Clanet 1995). The calculated losses were then renormalized by
the ratio of measured to calculated losses without the flame. This heuristic correction
was small except for the fundamental frequency. In figure 18(a) and 18(b) we show the
acoustic losses for the two cases, without and with droplets, calculated as a function
of the relative position of the interface, r. The losses are normalized by the acoustic
time, τa ≡ L/c0. In the spray case, the losses are calculated for a liquid mass fraction
xl = 0.054 and a vapour mass fraction xv = 0.012. When the front reaches the closed
end of the tube (r ≈ 0), there is no difference between the cases with and without
droplets.

Appendix B. Coupling between acceleration field and cellular flames
Pelcé & Rochwerger (1992) have calculated the growth rate of an acoustic instability

driven by the effect of the acoustic acceleration on the geometry of the flame front.
In this mechanism, the amplitude of cellular structures is modulated by the periodic
acoustic acceleration of the gas. This leads to a corresponding modulation of the
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Figure 18. Acoustic losses without droplets (a) and with droplets (b), as a function of the relative
position of the interface. Calculated for an equivalence ratio 1.0 (xl = 0.054).

total flame surface area and thus to a modulation of the global heat release rate. In
order to simplify their analysis, they have used a laminar flame model in which all
diffusion coefficients are assumed to be temperature independent. They have treated
the case of a flame front which is planar on average, but perturbed by a two-
dimensional sinusoidal wrinkling of small amplitude. Such flames have been observed
at the threshold of planar stability for downwards propagating flames (Searby &
Quinard 1990). Pelcé & Rochwerger have assumed that the flame is wrinkled at the
marginally unstable wavenumber. They give the following expression for the relative
instantaneous perturbation to the amplitude of wrinkling (their equation (19)):

Q =
−iωτt C(kd)

−(ωτt)2 A(kd) + iωτt B(kd) + D(kd)
a
u

UL

, (B 1)

where ωτt and kd are the reduced acoustic frequency and reduced wavenumber of
wrinkling respectively, a is the amplitude of wrinkling, u is the acoustic velocity and
UL the laminar flame speed. The functions A(kd), B(kd), C(kd) and D(kd) are terms
in the dispersion relation for the laminar flame, given explicitly in their paper. The
dispersion relation for the corresponding flame model with temperature-dependent
diffusivities has been given by Clavin & Garcia (1983). The same dispersion relation,
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in the present notation, can also be found in Searby & Clavin (1986). For the case of
temperature-dependent diffusivities, the functions A(kd)–D(kd) are given by

A(kd) = (2− γ) + γ kd
(
Ma −J/γ) , (B 2)

B(kd) = 2kd+
2(kd)2

(1− γ) (Ma −J) , (B 3)

C(kd) = γ kd
[
1− kd (Ma −J/γ)] (B 4)

D(kd) =
γ kd

Fr

[
1− kd (Ma −J/γ)]− γ

(1− γ)
×
[
(kd)2 + (kd)3

(
hb +

(2 + γ)

γ
Ma − 2J/γ + (2Pr − 1)

∫ 1

0

(hb − h(θ)dθ

)]
. (B 5)

In these expressions, Ma , Fr and Pr are the Markstein, Prandtl and Froude numbers
respectively, γ is the reduced gas expansion ratio, θ is the reduced temperature, h(θ)
is the density-weighted thermal diffusivity normalized by its value in the unburnt
gas, hb is the reduced density-weighted thermal diffusivity in the burnt gas and

J = γ/(1− γ) ∫ 1

0
h(θ)/(1 + θγ/(1− γ))dθ. The reader is referred to the cited literature

for further details. At the threshold of stability of the planar flame, the marginally
unstable wavenumber, kc, is given by D(kcd) = 0.

In order to compare our experimental results with the growth rate calculated for
this mechanism, we have extended the work of Pelcé & Rochwerger in two ways. First,
we have used the above expressions for A(kd)–D(kd) in place of the expressions in
their paper, based on temperature-independent diffusivities. Second, we have relaxed
their assumption that the cell size is given by the marginally unstable wavenumber,
D(kcd) = 0. This leads to the following expression for the transfer function, our
equation (2.15):

Tr =
(ak)2

2

(
Tb − To
To

) −iωτt C(kd)

−(ωτt)2 A(kd) + iωτt B(kd) + D(kd)
. (B 6)

Equation (B 6) should be realistic for real flames with a high activation energy and
small-amplitude sinusoidal wrinkling, ka� 1, at arbitrary wavenumber.

In our experiments the flame wrinkling was not sinusoidal, but cusped, see figure
19. This is not a fundamental limitation since any shape of flame front may be
represented, by Fourier decomposition, as a superposition of sinusoidal wrinkles. The
global growth rate of the instability can be found by summing the sum of the growth
rates for each wavenumber of the decomposition. However the aspect ratio of the
wrinkling in the experiments was also not small, typically ak ≈ 0.5, outside the strict
domain of validity of the calculation. Nevertheless, we have used the measured values
of the average cell size (often equal to the tube diameter, 0.1 m) and the measured
cell amplitude in equation (B 6). In view of the fact that the cell aspect ratio was not
small, we did not consider it useful to treat the flame shape by Fourier decomposition,
mentioned above. The calculated value is thus only an estimation of the growth rate
for this mechanism. However we still expect this calculation to give the correct order
of magnitude.

In § 4 we have used a Markstein number equal to 4. This is the value that has been
measured experimentally for lean propane flames (Clanet & Searby 1998; Searby &
Rochwerger 1991). The flame temperature, the gas expansion ratio, terms involving
the temperature dependence of transport coefficients and other thermodynamic gas
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Figure 19. Tomographic cut through cellular propane-air flame at onset of acoustic instability.
Equivalence ratio = 0.8, UL = 0.3 m s−1.

data were calculated for each mixture composition using the Chemkin package and
its thermodynamic database. No arbitrary or adjustable values were used for any
of the parameters in the calculation. A typical set of parameters calculated for an
equivalence ratio of 0.85 was: UL = 0.34 m s−1, Tb = 2123 K, hb = 3.64 (ratio of

diffusivities in burnt and unburnt gases),
∫ 1

0
(hb− h(θ)dθ = 1.16, J = 4.11, Dth = 0.21,

Pr = 0.695.

Appendix C. Calculation with temperature-dependent diffusivities
We suppose that the flame is quasi-isobaric and we neglect the effect of the latent

heat of vaporization of the liquid fuel. The equation for the conservation of energy,
in planar geometry, can be written

ρ
∂T

∂t
+ ρu

∂T

∂x
− ∂

∂x

[
(ρD)

∂T

∂x

]
= ρb

Q

Cp
W (T , Y ) , (C 1)

where W is the chemical reaction rate and Q is the heat of reaction per unit mass of
fuel. The mass conservation equation for the species limiting the reaction in the gas
phase is

ρ
∂Y

∂t
+ ρu

∂Y

∂x
− ∂

∂x

[
(ρD)

∂Y

∂x

]
= −ρb W (T , Y ) , (C 2)

where we have used the hypothesis of unity Lewis number (Dth = Dm ≡ D), and ρb is
the density of the burnt gas corresponding to the steady-state solution. We introduce
the mass-weighted axial space coordinate:

χ =
1

ρb

∫ x

α(t)

ρ(x, t)dx,
∂

∂x
=

(
ρ

ρb

)
∂

∂χ
, (C 3)
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where x = α(t) is the position of the thin reaction zone. In the planar unsteady case,
when the effect of production of fuel vapour is neglected,

∂ρ

∂t
+
∂(ρu)

∂x
= 0,

this classical transformation simplifies the expressions for the one-dimensional un-
steady conservation equations. Mass conservation shows that the following equality
is true everywhere in the gas phase:

ρ
∂

∂t
+ ρu

∂

∂x
− ∂

∂x

[
(ρD)

∂

∂x

]
≡ ρb

[
∂

∂t
+Ub

∂

∂χ
− ∂

∂χ

(
D(T )

∂

∂χ

)]
, (C 4)

where

Ub(t) ≡ ub − dα

dt
is the velocity of the gas crossing the reaction zone (gas velocity in burnt gas), and
by definition,

D(T ) ≡
(
ρ

ρb

)2

D(T ), (C 5)

which will be considered to be a function of temperature, using the perfect gas law
in the quasi-isobar approximation.

We now use the linear decomposition

a = ā+ â, (C 6)

where ā is the value of the steady-state solution and â is the unsteady perturbation.
Outside the combustion zone, IV, (C 1) then gives

∂T̂

∂t
+ ūb

∂T̂

∂χ
− ∂

∂χ

(
D̄∂T̂
∂χ

)
− ∂

∂χ

(
∂D̄
∂T

T̂
∂T̄

∂χ

)
= −Ûb(t)

dT̄

dχ
. (C 7)

Using the time Fourier transform, (C 7) becomes

iωT̂ + ūb
dT̂

dχ
− d2

dχ2

(
D̄T̂

)
= −Ûb(ω)

dT̄

dχ
. (C 8)

The particular solution to (C 8) is

−Ûb(ω)

iω

dT̄

dχ
, (C 9)

and the steady-state solution satisfies the equations

Ūb

dȲ

dχ
− d

dχ

(
D̄

dȲ

dχ

)
= 0, Ūb

dT̄

dχ
− d

dχ

(
D̄

dT̄

dχ

)
= 0. (C 10)

The solutions in the external zone are

χ < 0 : (in the gaseous zone, (III))

Θ ≡
(

1− Ȳ

Yo

)
=

(
T̄ − To
Tb − To

)
= exp

(∫ χ′

0

ūb

D̄dχ′
)

= exp (ξ) (C 11)

χ > 0 : (in the burnt gas zone, (IV))
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Ȳ = 0, T̄ = Tb,

where Yo is the mass fraction of fuel in the unburnt gas, and where we have introduced
the non-dimensional mass-weighted space coordinate, ξ, defined by

ξ ≡
∫ χ′

0

ūb

D̄dχ′, dξ =
ūb

D̄dχ. (C 12)

The solution to the enthalpy conservation equation (5.6) is obtained in the low-

frequency limit by the WKB method, ĥ = eS , by expansion in the small parameter
ωD̄b/ū

2
b � 1, where D̄b ≡ D̄(Tb), and to the leading order we find

i
ω

ū2
b

Db

( D̄
Db

)
+

dS

dξ
− d2S

dξ2
= 0. (C 13)

The solution to (C 13) which satisfies the condition of non-divergence for χ → +∞
(in the burnt gas) is

ĥ(ξ) = ĥ(0) exp

{
iω
Db

ū2
b

[
−ξ +

∫ 0

ξ

( D̄
Db

− 1

)
dξ′ − eξ

∫ 0

ξ

e−ξ
′
( D̄
Db

− 1

)
dξ′
]}
.

(C 14)
The solution (C 14) is valid when the temperature is greater than the vaporization
temperature, T > T∗, i.e. in the zones (III), (IV), and (V) of figure 16. The temperature
fluctuation, T̂ (χ, ω), is given by the solution to the linear equation (C 7), which, at
low frequencies, can be written

χ < 0 :

T̂ = Ûb ūb
(Tb − To)
D eξ

1

iω

[
exp

(
iω

ūb
χ

)
− 1

]
+ T̂ (0)

Db

D exp

(
ξ +

iω

ūb
χ

)
, (C 15)

χ > 0 :

T̂ = T̂ (0) exp

(
− iω

ūb
χ

)
, (C 16)

where we have used the particular solution (C 9) and the low-frequency expansion
of the solutions to the homogeneous equation, (C 7), which satisfy the boundary
conditions at x→ +∞ in (C 16) and at x→ −∞ in (C 15).

In the framework of the theory of Zeldovich & Frank-Kamenetskii (1938), adapted
to cover the unsteady case (Joulin & Clavin 1979), the relative fluctuation of the
combustion temperature, T̂ (0), is assumed to be of the order of the inverse of the
reduced activation energy, β, a condition which can be verified only in a particular
range of parameters defined by (5.12). In the limit β → ∞, the relation between the
fluctuations of heat flux into the preheat zone and the combustion temperature is
controlled by the combustion kinetics in zone (IV),

d

dξ
T̂

∣∣∣∣
ξ=0−

=
β

2
T̂ (0). (C 17)

The calculation of the heat flux from (C 15) gives the modification to the flame
burning velocity, to leading order in the limit β →∞:

Ûb

Ūb

=
β

2

T̂ (0)

Tb − To . (C 18)
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Choosing the position of the origin in the internal zone (IV) where Ŷ = 0, ĥ(0) =
CpT̂ (0), we can rewrite (C 14) in the region where ξ > ξ∗ in the form

ĥ = 2Cp
(Tb − To)

β

Ûb

ūb
exp

{
iω
Db

ū2
b

[
−ξ +

∫ 0

ξ

( D̄
Db

− 1

)
dξ′

−eξ
∫ 0

ξ

e−ξ
′
( D̄
Db

− 1

)
dξ′
]}

. (C 19)

Equation (C 19) takes the much simpler form (5.7), when the temperature dependence
of the mass-weighted diffusivity, D, is neglected.

Assuming that the vaporization takes place at the fixed temperature T = T∗, the
position of the vaporization zone of figure 16,

χ∗(t) ≡ 1

ρb

∫ α∗(t)

α(t)

ρ(x′, t) dx′ (C 20)

is given by T (χ = χ∗) = T∗,

T̂ (χ̄∗) + χ̂∗
dT̄

dχ

∣∣∣∣
χ=χ̄∗

= 0, (C 21)

and thus the speed of this front, dχ̂∗/dt, in the laboratory frame is

dχ̂∗
dt

= −iω

[
T̂ (χ̄∗)

/(
dT̄

dχ

∣∣∣∣
χ=χ̄∗

)]
. (C 22)

According to (C 20) and mass conservation, the gaseous mass flux through the
vaporization front is

ρ∗
(
u∗ − dα̂∗

dt

)
= ρb

(
Ub − dχ̂∗

dt

)
, (C 23)

where Ub(t) ≡ ub − dα/dt. The flux of any quantity Z through the vaporization zone,

f
(Z)
∗+ = ρ∗

(
u∗ − dα̂∗

dt

)
Z∗ − ρ∗D∗ ∂Z

∂x

∣∣∣∣
x=α∗+

can be written, using (C 23) and (C 3)

f
(Z)
∗+ = ρb

(
Ub − dχ̂∗

dt

)
Z∗ − ρbD∗ ∂Z

∂χ

∣∣∣∣
χ=χ∗+

. (C 24)

The mass flux of liquid fuel into the vaporization zone is

mdnd

(
vd − d

dt
α̂∗(t)

)
,

where md, nd and vd are the mass, number density and velocity of the droplets
respectively. Using (C 23), the mass flux of liquid can be written as a function of the
gas velocity in the vaporization zone, u∗:

mdnd

(
vd − d

dt
α̂∗(t)

)
= mdnd (vd − u∗) +

ρb

ρ∗
mdnd

(
Ub − d

dt
χ̂∗(t)

)
. (C 25)

Introducing the diffusive and convective fluxes of fuel vapour leaving the vaporization
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zone, the conservation of fuel through the vaporization zone can be written, for the
first flame model of figure 16(a),

Yo ρ∗ (vd − u∗) + ρb (Yo − Y∗+)

(
Ub − dχ̂∗

dt

)
= −ρbD∗ dY

dχ

∣∣∣∣
χ=χ∗+

, (C 26)

in which we have introduced the liquid mass fraction, Yo ≡ mdnd/ρ0. The linearized
expansion of (C 26) gives

Yo ρ∗ (v̂d − û∗) + ρb
(
Yo − Ȳ∗+)(Ûb − dχ̂∗

dt

)
− ūb ρbŶ

∣∣∣
χ=χ̄∗+

= +ρbχ̂∗

[
Ūb

dȲ

dχ

∣∣∣∣
χ=χ̄∗+

−D∗ d2Ȳ

dχ2

∣∣∣∣
χ=χ̄∗+

]
− ρbD∗ dŶ

dχ

∣∣∣∣∣
χ=χ̄∗+

, (C 27)

where the first term on the right-hand side can be calculated from (C 10) and (C 22)
to give

Yo ρ∗ (v̂d − û∗) + ρb
(
Yo − Ȳ∗+)(Ûb − dχ̂∗

dt

)
= ūb ρbŶ

∣∣∣
χ=χ̄∗+

− ρbD∗dŶ
dχ

∣∣∣∣
χ=χ̄∗+

+ ρbYo
T̂ (χ̄∗)

(Tb − To)
dD
dχ

∣∣∣∣
χ=χ̄∗+

, (C 28)

where T̂ (χ∗) is given by (C 15), Ŷ∗+ ≡ Ŷ
∣∣
χ=χ∗+ and dŶ /dχ

∣∣
χ=χ̄∗+ are obtained from

(C 19) using ĥ = QŶ + CpT̂ , and dχ̂∗/dt is given by (C 22). The transfer function is
then obtained from (C 28) when the relaxation relation (5.5) is used.

The problem simplifies greatly in the distinguished limit ωτt → 0, ξ∗ → −∞,
(ωτt)ξ∗ = O(1), which is relevant when T∗ → To. In this limit, the exponent on the
right-hand side of (C 19) reduces to

iω
D(To)

ū2
b

ξ∗ = iω
ρ2
oD(To)

ρ2
bū

2
b

ξ∗ = iωτtξ∗,

the latter equality resulting from ρbūb = ρoUL. Moreover, according to (C 11) and
(C 15), T̂∗(χ∗) and

(
Yo − Ȳ∗+) are proportional to the transcendentally small term

exp(ξ∗) and are thus negligible. Notice also that, for the same reason, a non-zero
latent heat of vaporization has no effect in this limit. Finally notice that D∗dŶ /dχ|χ∗+
is negligible compared to Ŷ (χ∗+) so that we find exactly the same results as (5.11)
and (5.17).

In the second flame model of figure 16(b), the conservation of fuel through the
vaporization zone yields

mdnd

(
vd − d

dt
α̂∗(t)

)
= ρbD∗

[
dY

dχ

∣∣∣∣
χ=χ∗−

− dY

dχ

∣∣∣∣
χ=χ∗+

]
, (C 29)

which, in the low-frequency limit (5.4), reduces to the same equation as for the first
flame model:

mdnd

(
vd − d

dt
α̂∗(t)

)
= ρb

(
vb − dχ̂∗

dt

)
Y∗ − ρbD∗ dY

dχ

∣∣∣∣
χ=χ∗+

(C 30)

because zone (I) is quasi steady in this limit. The final results are thus the same for
both models.
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